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fj-bond cleavages are observed with NCbPF6 in methylene 
chloride-sulfolane solvent.3 For example, the oxidation of 
ethane afforded both nitroethane and nitromethane, while 
adamantane afforded nitroadamantane in about 10% yield. 
In general, the heterolytic cleavage of carbon-hydrogen and 
other (T bonds requires a highly reactive electrophile, which is 
commonly generated in situ under harsh conditions. As a 
consequence, yields are often low and complex mixtures of 
products common. 

We recently demonstrated that the reaction of alkyl halides 
and alkyl ethers with NCbBF4 in acetonitrile resulted in effi­
cient abstraction of halide or alkoxide ion and formation of a 
nitrilium ion, which afforded the corresponding acetamide 
upon hydrolysis.71' Mechanistic studies75 with optically active 
exo- and e«rfo-2-bromonorbornane provided convincing evi­
dence that the reaction of N O T + with the nonbonding electron 
pairs of the halogen forms a nitronium complex that effects 
heterolysis of the C-X bond. In the present study, we provide 
conclusive evidence that a related mechanism is operating in 
alkane oxidation. The reaction of selected hydrocarbons with 
NO2BF2 results in a formal hydride ion abstraction, leading 
to the formation of transient carbenium ion intermediates. 

We have noted that tertiary alkyl halides frequently afforded 
highly substituted thermodynamically stable alkenes as in­
termediates upon reaction with NO2BF4. This observation 
prompted a comparative study between halide and hydride 
abstraction. A common carbenium ion (2) is implicated in the 
oxidation of 2-methylbutane ( la) and 2-chloro-2-methylbu-
tane (lb). Both compounds afforded 2-acetamido-2-methyl-
3-nitrobutane (4) (55%) as the major product. The vicinal 
nitroacetamide 4 was identical in every respect with the 
product obtained from the electrophilic addition OfNO^BF4 

to trimethylethylene (3) in acetonitrile.8 The reaction sequence 
given in eq 1, involving alkene formation from a cationic 
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Mechanism of the Oxidation of Alkanes with Nitronium 
Tetrafluoroborate in Acetonitrile. Evidence for a 
Carbenium Ion Intermediate 

Sir: 

It is becoming increasingly evident that electrophilic attack 
at a carbon cr bond is an important reaction despite the low 
reactivity often associated with completely saturated mole­
cules. Since cr-bond cleavage via this type of mechanism has 
only recently been noted,' the scope and utility of this class of 
reactions remain to be defined. Protolytic reactions of alkanes 
by superacids,2 nitration by nitronium salts,3 Lewis acid cat­
alyzed halogenation by elementary halogen,4 hydroxylation 
with dry ozone,5a and oxyfunctionalization with ozone and 
hydrogen peroxide in superacid media5b are among the more 
interesting transformations involving a bonds that have been 
reported to date. 

Early efforts to oxidatively functionalize hydrocarbons 
frequently utilized the nitrogen oxides. Both solution and 
gas-phase chemistry at high temperatures often favored 
free-radical reactions.6 At lower temperatures, heterolytic 

species, provides a rational explanation for these observations. 
These data cannot exclude a concerted elimination from a 
complex consisting of lb and N 0 2 + . Significantly, the results 
do strongly suggest that parallel mechanisms are operating in 
both alkane9 and alkyl halide oxidation. 

A second mechanistic probe utilized bicyclo[2.2.2]octane 
(5), where cation generation of C-2 would lead to rearranged 
products. Treatment of 5 with NO2BF4 in acetonitrile (16 h) 
afforded acetamides 6, 7, and 8 in an overall isolated yield of 
73% (eq 2).10 The ratio of 7:8 is informative in that the sol-
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volysis of bicyclo[2.2.2]octyl-2-/>-bromobenzenesulfonate has 
been reported to afford a 65:35 ratio of unrearranged (7) to 
rearranged products (8)." The formation of a preponderance 
of the tertiary bridgehead cation is significant in that it provides 
a clear example when <r nucleophilicity is more important than 
the stability of the resulting carbenium ion in electrophilic 
attack at a C-H bond. The importance of a basicity in this 
electrophilic addition is further exemplified by the facile oxi­
dation of adamantane (9), which is readily converted (5 h) to 
/V-(l-adamantyl)acetamide in 88% yield. In contrast, nor-
bornane (10) gave only /V-(exo-2-norbornyl)acetamide (78%), 
with no evidence of involvement of the highly destabilized 1 -
norbornyl cation. The relative ease of hydrogen transfer from 
the bridgehead positions of 5,9, and 10 does reflect the stability 
of the incipient tertiary cations.'2 

Rate-limiting hydrogen transfer to NO2
+ is further sup­

ported by an observable primary deuterium kinetic isotope 
effect. Previously reported oxidative hydride transfer reactions 
have exhibited a kwjku range from 1.6 to 11.7 for organic 
substrates.13 The isotope effect is expected to be largest when 
hydrogen is half transferred in a linear transition state, where 
the summation of vibrational energy differences will be max­
imized (eq 3). Oxidation of 1-adamantane-di with NO2BF4 
in acetonitrile was accompanied by a kinetic isotope effect of 
1.86 at 20 0C. The same experiment with nitrosonium tetra-
fluoroborate resulted in a ku/knoS 2.30 at 82 0C.14 The higher 
temperature for NOBF4 was required because of the sub­
stantially diminished efficacy of NO+ as an electrophilic re­
agent in this solvent system.'5 Both salts are most likely highly 
solvated by the donor solvent, which both increases the selec­
tivity of the oxidant and stabilizes carbenium ion formation. 

R ^ H + E+ — [R- --H- - -E] + — R+ + H—E (3) 

Our data demonstrate that the nitronium ion is a fairly 
discriminant oxidant (in acetonitrile), whose reactivity is in­
fluenced by both a basicity and incipient carbenium ion sta­
bility. This selectivity would tend to exclude a reactant-like 
transition state. The formation of bridgehead acetamide 6 as 
the major product from 5 argues against a late transition state 
with appreciable carbenium ion character. In order to explain 
the relatively small &H/&D, we therefore invoke the nonlinear 
transition state 11. Such a "triangular"3'16 transition state 
would be expected to exhibit a smaller iostope effect, since less 
energetic bending vibrational modes may be the major con­
tributor to the observed isotope effect. Significantly, kinetic 
isotope effects for hydrocarbon nitration with nascent pro-
tonated NO2

+ (O=N2+—OH) generated in concentrated 
HN0 3 /H 2S0 4 are also small (kH/kD = 2.O).'7 This suggests 
that similar transition states may be involved. Olah initially 
suggested that nitronium ion nitration of alkanes with NO2PF6 
proceeds via a three-center bond transition state (11) involving 

H 

R---< 

11 

the electron pair of the a C-H bond and an empty p orbital of 
the bent nitronium ion. The apparent dichotomy between these 
studies,3'17 which afford nitroalkanes (nitration), and the 
present results may be attributed to our use of acetonitrile 
solvent, a very efficient carbenium ion trap. Control experi­
ments have rigorously excluded nitroalkanes as the kinetic 
product in acetonitrile.18'19 

In summary, this study has provided the most effective 
method to date for functionalizing hydrocarbons with nitro­
nium salts. This is the first example of rate-limiting hydrogen 
transfer to a nitronium salt that affords a carbenium ion in­

termediate. Evidence is presented that the transition state 
closely resembles that for nitration with the donor solvent 
strongly influencing cation formation. 
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Primary Processes in the Photochemistry of 
Co(NH3)5C|2+ 

Sir: 

Extensive photochemical studies of Co(III) complexes have 
been carried out.' In particular the charge-transfer photo-
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